Recursive algorithms for computing the Cramer-Rao bound

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive algorithms for computing the Cramer-Rao bound

Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient al...

متن کامل

Recursive Algorithms for Computing the Cramer-Rao Bound [Correspondence] - Signal Processing, IEEE Transactions on

Computation of the Cramer-Rao bound (CRB) on estimator variance requires the inverse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be computationally intractable when the number of unknown parameters is large. In this correspondence, we compare several iterative methods for approximating the CRB using matrix splitting and preconditioned conjugate gradient al...

متن کامل

Revisiting the Cramer-Rao Bound for Localization Algorithms

Acquiring position information by means of ad-hoc networks and in particular wireless sensors networks (WSNs) received a lot of attention in the past years. Survey works, such as [1], [2], show a large number of techniques/algorithms that can be used to solve the localization problem. The techniques used are often borrowed from other fields of science and modified to fit the context of wireless...

متن کامل

The Cramer-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

Geometry of the Cramer-Rao bound

The Fisher information matrix determines how much information a measurement brings about the parameters that index the underlying probability distribution for the measurement. In this paper we assume that the parameters structure the mean value vector in a multivariate normal distribution. The Fisher matrix is. then a Gramian constructed from the sensitivity vectors that characterize the first-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 1997

ISSN: 1053-587X

DOI: 10.1109/78.558511